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Yield strength and anelastic limit of amorphous 
ductile polymers 
Part 1 Amorphous structure and deformation 

Z. H. S T A C H U R S K I  
Department of Materials Engineering, Monash University, Melbourne 3168, Australia 

The microstructure of amorphous polyethylene below its glass transition temperature is described 
in some detail. The dimensions, shape and statistical mechanics of a polyethylene chain are 
already well understood. The packing of such molecular chains is less understood and it is 
considered here in terms of a CH2 pair distribution function. The pair distribution function is 
derived on the basis of (i) the variation of specific volume with temperature for completely 
amorphous and ideally crystalline polyethylene, and (ii) randomness of packing of the mole- 
cular chains. A scheme for the description of deformation of amorphous polymers is proposed. 
Points of constriction along the molecular chain are defined in terms of variation of cross- 
sectional area of the molecular tube. During deformation the points of constriction are convected 
with the body of the polymer. However, the deformation of the chain segment between the 
points of constriction is analysed in terms of kinematics of chain linkages. 

1. I n t r o d u c t i o n  
The process of yield involves breaking and recon- 
stituting atomic bonds. In order to be able to say 
anything sensible about this process it is necessary to 
understand; (i) the amorphous microstructure of the 
material on a molecular level, and (ii) the existing 
hierarchy of the atomic bonds. 

A detailed knowledge of the amorphous micro- 
structure in polymers below the glass transition tem- 
perature is not generally available. Perhaps the best 
described microstructure of a glassy polymer is that of 
atactic polystyrene [1]. Some, albeit incomplete, 
knowledge about other amorphous polymers also 
exists [2, 3]. In this paper polyethylene is chosen as the 
model material of an amorphous polymer for the 
description of the yield process below the glass tran- 
sition temperature. Since a completely amorphous 
polyethylene is difficult to obtain experimentally 
below its glass transition, this choice requires some 
explanation and justification. 

For the purpose of the model of yield presented in 
this paper the most desirable feature in the polymer is 
the simplicity and uniformity of its molecular struc- 
ture. This is exemplified by linear polymers with the 
most basic repeat units such as polyethylene, poly- 
tetrafluoroethylene, amorphous sulphur, selenium, 
and others. Of these, polyethylene is the most thor- 
oughly studied polymer; i.e. the type and strength of 
the atomic interactions is well established [4-11]. The 
statistical conformations of the polyethylene chain 
have been worked out theoretically [12], and confir- 
med experimentally [13, 14]. The relevant physical 
properties, thermodynamic data and the glass tran- 
sition temperature are known [15, 16]. On the basis of 
all this information it is possible to describe and vis- 
ualize the amorphous structure of polyethylene below 

its glass transition temperature with a high degree of 
confidence. Thus point (i), as stated in the first para- 
graph, can be satisfied. 

As regards point (ii), Wunderlich [16] lists the 
energy associated with chemical bonds in polymers in 
the following general order: 

I. Covalent bonds (order of magnitude 420 kJ mol- 
of bonds). 

2. The next biggest contribution comes from the 
change of potential energy on rotation (approximately 
4 to 50 kJ mol- l). 

3. The next contribution is from interactions due to 
hydrogen bonds or dipoles (usually between 4 and 
40 kJ mol- l ). 

4. Finally the van der Waals dispersion bonds 
(around 0.4 to 2 kJ mol l). 

Thus the first manifestations of mechanical yield in 
polyethylene (in which bonds of type 3 are absent) 
should occur at stress levels which are just sufficient to 
break the weakest type, i.e. van der Waals interchain 
bonds. However, it is important to point out that with 
increasing deformation strain-hardening due to 
entanglement may take place. This will increase the 
stress level, and consequently cause breaking of the 
next weakest bond, i.e. rotation around the covalent 
C-C  bond [17]. 

Several molecular theories for yield in amorphous 
polymers have been proposed [18-22] and are reviewed 
in Part 2 [23]. In contrast to these theories the model 
presented in Part 2 of this publication places the res- 
ponsibility for the onset of yield in amorphous poly- 
ethylene on the breaking of the interchain van der 
Waals bonds [23]. There seem to be two general argu- 
ments supporting this view. 

Firstly the interchain bonds are the weakest of all 
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bonds in this structure, and this satisfies the principle 
that the weakest link should determine the strength. 

Secondly, at the strain levels at which yield in 
amorphous polymers is observed (i.e. around 5 to 
10%), the deformation of the molecular chain does 
not necessitate the drastic trans to gauche or gauche to 
trans rotations, as is required by some of  the above 
mentioned theories. Both of these arguments are 
developed fully in this paper. 

2. The structure of amorphous 
polyethylene below Tg 

It is customary to assign van der Waals radii to the 
atoms, and represent the molecules by a so-called 
hard-sphere model. In the case of covalent bonding 
the spheres of the atoms defined by the van der Waals 
radii, are thought to interpenetrate to distances 
usually close to the sum of  the covalent radii. 

The van der Waals radius for the carbon atom is 
0.170 nm, and that for the hydrogen atom is 0.117 nm. 
In a repeat unit of  polyethylene, [CH2]-, the C - H  
distance is only 0.109 nm due to the strong covalent 
binding forces between these two atoms. The [CH2] 
group is the smallest building block of  the polyethyl- 
ene chain [16]. 

The C - C  covalent bond along the molecular chain 
fixes the separation of the repeat units at a distance 
1r o = 0.154 nm, and adjacent bonds form an angle of  
109.5 ~ The H - C - H  angle on each repeat unit is 
about 107 ~ and a plane on which these three atoms 
lie, bisects the C - C - C  angle. The molecular para- 
meters listed so far vary little with temperature or 
normal levels of  mechanical stress, and henceforth will 
be considered as constant. 

As is well known, the isomerism of a molecular 
chain arises from rotations around the covalent C - C  
bonds, with preferred positions named trans (t), 
gauche + (g+) and gauche- (g- ) .  The flexibility of the 
chain leads to random coil configurations. In equili- 
brium the random configurations of  the chain have a 
common feature, namely the so-called end-to-end dis- 
tance 

L = 0.218(N)~/2Co~ (nm) (1) 

where N is the number of  repeat units in the chain, and 
Coo is the characteristic ratio [12] which embodies the 
statistical mechanics of  real chains. The value of  Coo 
for polyethylene at a temperature of 413 K (melt) is 
equal to 6.8, as calculated by Abe et al. [24], and 
confirmed experimentally by Schelten et al. [14]. Thus 
two polyethylene chains with the same number of  
repeat units will assume the shapes of two different 
random coils, but will have the same end-to-end dis- 
tance, the same overall ratio of  trans to gauche bonds, 
and the same thermodynamic potential [16]. 

The packing of  such molecular chains of polyethyl- 
ene at a temperature of 413 K (140 ~ C) has been stud- 
ied by many workers [14, 25-28], some holding the 
view that short order must exist in amorphous poly- 
mers. However, accumulated experimental evidence 
and careful analyses point to the fact that true 
amorphism does exist in, at least, the molten state of  
polymers [27, 28]. In particular Lovell et  al. [28] con- 

cluded that the amorphous structure of  polyethylene 
can be best represented as an assemblage of random 
chains with uncorrelated segments distributed as 
closed packed random spheres. 

It is reasonable to expect that, if the polyethylene 
melt were quenched from 413K to some suitably 
chosen low temperature so rapidly as to prevent any 
crystallization, then the amorphous structure would 
be retained in the supercooled polymer. There is suf- 
ficient experimental evidence for that happening in 
other polymers [29]. 

It is assumed that the glass transition of amorphous 
polyethylene is 237 K [15]. In oder to prevent crystal- 
lization and to retain the supercooled structure let us 
consider this material to have been quenched to 213 K 
(some 20 K below Tg). The configurations of  the indi- 
vidual chains will be "frozen-in". Therefore, all trans 
and gauche conformations and the end-to-end dis- 
tances will remain, at least initially, the same as in the 
melt. However, the volume of  the polymer will be 
diminished, as shown in Fig. 1. This decrease in vol- 
ume is accounted for by a decrease in spacings of the 
non-covalently bonded repeat units only. Now it is 
necessary to discuss the packing of  the chains in the 
solid polyethylene in greater detail. The case of the 
crystalline polyethylene is described first as the basis 
for evaluation of the amorphous structure. 

In crystalline polyethylene the chains form a close- 
packed orthorhombic crystal with lattice constants a, b 
and c. Two chains comprise the crystallographic 
repeat unit; one in the corner and one in the centre of 
the cell. An accurate measurement of  the unit cell 
dimensions was published recently [30]. The mag- 
nitudes of  the a and b lattice constants are such that 
the packing may also be viewed as pseudo-hexagonal, 
i.e. with a small distortion of  the hexagonal base. In 
this view there are four chains at a distance = 1/2 d~ ~ 0, 
and two chains at a distance equal to b from the chain 
at the centre (noting that d~0 = a z + b2). On the 
basis of  the published data we find that at 213 K, 
a = 0.733nm and b = 0.493nm, hence 1/2d~ 0 = 
0.442nm < b. 

The simplest approximation for packing of  poly- 
ethylene chains is a close-packed hexagonal structure 
of  straight cylindrical rods, with the distance between 
the centres of the rods = d. If the density of packing 
between the orthorhombic and hexagonal structures 
is to be the same, then it is easily found that 
d = [ab/(3)~/2] 1/2, and equals 0.457nm at 213 K. 

Let us assume that in the amorphous polyethylene 
the average spacing between the non-covalently 
bonded CH2 pairs is ?. It is of interest to find out what 
is the value of  ?, if the packing in the crystalline 
material (at the same temperature) is charac- 
terized by d. Noting that the three-dimensional 
changes in volume must be related to the two- 
dimensional changes in spacing between chains one 
obtains: ~ = d/(1 - 1/2Av/vc) ,  where Av = Va -- vc, 
and v, and vc are the specific volumes of the amorphous 
and crystalline polyethylene, respectively. At 213K 
Va = 1.094 X 10 3m3kg -l and v c = 0.985 x 10-3m 3 
kg-~, hence ~ = 0.483 nm. Alternatively one can use 
the relationship that the quantity of  mass per unit 
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Figure 1 Volume-temperature relationship for 
ideal amorphous and crystalline polyethylene 
drawn on the basis of data from [16, 28, 30]. 

length of chain must be the same in both cases, and 
therefore obtain ? = d(v,/vr j/2 = 0.481 nm at 213 K. 

Both of  the above relations predict an average non- 
covalent CHz to CH:  spacing in the amorphous  poly- 
ethylene relative to its crystalline state. These relations 
satisfy the principle of  conservation of  mass, but give 
no indication as to the relative local orientation of  the 
chains or the variation in spacings of  the non-covalent 
CH2 pairs. 

A more specific and precise way to describe the 
packing of  the molecular structure is to define a pair 
distribution function for the C H  2 groups around an 
arbitrarily chosen repeat unit in the bulk of the 
material [31]. For  the crystalline material, with the full 
knowledge of its crystallography, it is possible to cal- 
culate the pair distribution function quite precisely. 
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Figure 2 Pair distribution function for crystalline and amorphous 
polyethylene at 213 K. 

This shown in Fig. 2, up to a radius of  0.516nm. The 
next nearest position of a C H  2 group is some 0.05 nm 
further away, therefore the radius of  0.516nm is a 
convenient point at which to limit the function. The 
concentration of  the CH2 groups rises sharply in the 
range between 0.4 to 0.5 nm due to the presence of  
CH 2 groups from the neighbouring chains. In total 
there are 25 CH 2 groups within a sphere of  
radius = 0.516 nm (more precisely; 25 centres of  CH: 
groups, taking the centre of  the carbon a tom as the 
centre of  the group). The mass of  o n e  C H  2 group is 
(12 + 2) 1.67 x 10-:7kg = 23.38 x 10-27kg. Divi- 
ding the volume of  the sphere by the total mass 
gives calculated value of  specific volume equal to 
0.985 x 10-3m3kg-L By comparison, the speci- 
fic volume calculated on the basis of  measured 
unit cell dimensions (as in Fig. 1) is v~ = 0.985 x 
10 3 m 3 kg-1. The agreement is fortuitous, but useful, 
because similar calculations performed on the amor-  
phous pair distribution function should therefore give 
the value v, = 1.094 x 10 3m3kg i (again from 
Fig. 1). However,  in this case the value of v, is used 
instead to calculate the number  of  CH2s within the 
sphere of  radius 0.516 nm; the result being 22.5. This 
number  is divided between CH2s on the same chain, 
and those packed randomly around the central one at 
the average distance ? calculated earlier as equal to 
around 0.48 nm. These CH:s  form a distribution of  
their own, which in this paper  is assumed to have the 
rectangular box shape as shown in Fig. 2. However, 
the derivation of the amorphous  pair distribution 
function must be explained in greater detail. 

In polyethylene the next nearest neighbours to any 
CH 2 group are always two (one on each side) cova- 
lently bonded CH:  groups, at a distance of 0.154 nm 
from the CH:  group at the origin. The second nearest 
neighbours are again two CH 2 groups, covalently 
bonded to the first nearest neighbours and found 
always at a distance of  0.254nm from the origin. 
Whilst this distance is fixed, their precise location 
depends on the trans or gauche configurations of  the 
first covalent bond. The third next nearest covalently 
bonded CH2 groups are no longer at a fixed distance 
from the or ig in .  Their position depends on the con- 
figuration of  the C - C  bond between the first and 
second neighbour, i.e. trans, gauche + or gauche- .  I f  it 
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is trans, then the distance from the origin is the same 
as in the crystalline material ( ~  0.39 nm). If  it is gauche 
(+  or - ) ,  then the distance is close to 0.292nm. 
Disregarding the differences in free energy, the occu- 
pation of the former sites will be 1/3 • 2 = 0.67, 
and the occupation of the latter sites will be 
2/3 x 2 = 1.33, as shown by the relative bar heights 
in Fig. 2. The fourth next nearest covalently bonded 
CH2 groups will be found at three different distances 
from the origin, characterized by the bond sequences: 
(i) ttt; (ii) tg+t = t g - t  = ttg + = t tg- ;  and (iii) 
tg+g § = tg g (the tg+g - = t g -g  + sequences are 
forbidden due to molecular overlap [12]). The occu- 
pation/distance will be (1/7 • 2)/0.508 nm (4/7 • 2)/ 
0.421 nm, and (2/7 x 2)/0.359nm for the three cases, 
respectively. It is interesting to note that the possible 
spatial positions of up to the seventh nearest covalently 
bonded neighbour have been discussed in an early 
publication [32]. 

It is now assumed that all other nearest neighbours 
(regardless of  whether they are a part of  the same 
chain, or are from other chains) fall within the rectan- 
gular box centred around ~ = 0.48 nm. Since the 
packing of the chains is random we assume equal 
probability of occupation by the 13.5 CH2 groups 
within that box distribution. The width of this distri- 
bution is determined by r0 - 0.46 nm which is the 
closest approach of chains in the crystalline lattice, 
and rma x '~ 0.5nm which is the expected widest 
separation on the basis of a box-shaped distribution 
symmetrical around ?. This completes the description 
of the pair distribution function of amorphous poly- 
ethylene as shown in Fig. 2, and summarizes the 
understanding of  the microstructure of  this material. 

3. Behaviour under deformat ion 
Consider an element of  volume of  the polymer with 
reference to a set of co-ordinate axes X Y Z  as shown in 
Fig. 3. 

A homogemeoug simple shear is now applied to the 
volume of polymer in the X-direction and on the X Z  
plane. To analyse the deformation we imagine two 
planes parallel to X-Y,  traversing through the mol- 
ecules, and separated by an arbitrary distance h. 
Further analysis will be focused on the deformation of  
the material (segments of molecular chains) contained 
between the two imaginary planes of  shear. 

The phenomenological approach to the description 
of infinitesimal and finite strain in materials is a classi- 
cal and fully developed subject and will not be discussed 
here. 

In a molecular approach the deformation of a ran- 
dom coil macromolecule has been treated in great 
detail in connection with rubber elasticity and statisti- 
cal mechanics of  isomerism. These, however, con- 
centrate mainly on the behaviour of the molecular 
chain above the glass transition temperature or in 
solution or in the melt. Here the emphasis is placed on 
the deformational behaviour of the molecule in an 
amorphous polymer below its glass transition tem- 
perature, and its relationship to the macroscopic 
deformation experienced by the whole volume of the 
polymer. 

Z 

X 

Figure 3 An element of  volume of  polymer subjected to simple shear 
deformation. Analysis is focused on the deformation of  segments of  
molecular chains contained between two imaginary planes of  shear. 

The molecular chain is frequently represented as a 
series of  linkages of length l, angle 0 between adjacent 
links, and free rotation around each C - C  bond. This 
is a very restrictive representation in the sense that it 
does not allow any changes in l or 0 which are 
expected to occur in the real molecules. Such a chain 
can be modelled by a series of  mechanical linkages 
with hinges, as shown in Fig. 4. 

Several studies of  the deformation of  polymeric 
chains in relation to plastic flow have been published 
[20, 22, 23]. In particular a strophon, defined as a 
chain sequence comprising a number of rigid segments 
joined to other strophons by bonds of  free rotation, 
was described as the unit of  molecular deformation in 
polymers. Experimental mechanical models were used 
to find the most probable number of  rigid segments 
which can be displaced by cooperative rotational 
motions. In here a different approach is taken. The 
motions of the chain are considered in terms of an 
externally imposed general displacement. Indeed the 
following question is posed; what is the minimum 
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Y 

Figure 4 The molecular chain can be represented as a series of  
mechanical linkages with hinges. What is the minimum number of  
linkages so that point P can be moved to any point inside the 
sphere? 
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number of links in the chain, or chain segment, such 
that the end of the chain, denoted by P in Fig. 4, can 
be moved to anywhere within a sphere of radius R 
centred around the origin? The underlying motivation 
for this line of thought is as follows: if the end of the 
chain can be moved to any point inside the sphere, 
then it means that such a chain can be subjected to any 
general deformation (of limited magnitude). Intuitively 
one feels that the above requirements can be satisfied 
if the chain contains a sufficiently large number of 
links, and the sphere is sufficiently small. However, it 
is important to know what is the minimum number of 
links to fulfill this condition. This would then corre- 
spond to a shortest segment of the molecular chain 
which can be deformed by simple shear within the 
body of  the polymer without straining the covalent 
bonds. 

The kinematics of  chain linkages is a subject of its 
own in the field of mechanics [34]. The analysis of 
linkages requires co-ordinate transformations around 
a closed chain which must satisfy the following rela- 
tionship for each and every configuration 

[ r n , ] . . .  [T34] [T23] [Tl2] = [1] (2) 

where [Tu+ ~] transforms coordinates of a point P in i 
system to its co-ordinates in i + 1 system. A full analy- 
sis of a chain model based on polyethylene is very 
involved, and will be the subject of  a separate publi- 
cation. Suffice it to say at this stage that a chain 
segment of between 7 to 10 links can be shown to 
satisfy the condition for general deformation, provid- 
ing the end of the chain P is confined to move in 
certain portions of the sphere rather than the whole 
[35]. The exact number of the linkages is not import- 
ant at this point. What matters is the fact that, given 
such a segment, it can be deformed freely relying on 
rotations around the C - C  bond only. If the restric- 
tions on the model are relaxed by allowing limited 
variations A0 of the angle 0, then movement of the 
chain becomes freer, and consequently the minimum 
length of the chain segment will be reduced. In poly- 
ethylene the compliances related to bending and 
stretching of the covalent bonds are about an order of 
magnitude smaller than the compliance for rotation 
around the bond. Nevertheless small changes can be 
expected to occur [12], and a general conclusion can be 
reached that polyethylene chains possess a high degree 
of flexibility. 

The conceptual aid of  the "molecular tube", 
invented by Doi and Edwards [36] and used so success- 
fully by de Gene to describe reptation [37], is also very 
helpful in visualizing the deformational behaviour of  
a molecular chain in an amorphous polymer below its 
glass transition temperature. The tube is simply the 
space created around any one molecular chain by the 
segments of  all its nearest neighbouring chains (see 
Fig. 5). 

Due to the randomness of  the structure the shape 
and cross-sectional area of  the tube must vary along 
its length, widening in some places, and coming to 
minimum dimensions at other points. These latter 
points will act as constrictions on the molecular chain 

within,  restricting local motions of  the chain at these 

Figure 5 The molecular tube - an imaginary surface dividing the 
space around any molecular chain from its neighbours. Points C~ 
and C 2 illustrate two points of  constriction in the molecular tube. 

locations. The number of these points of  constriction 
per molecular chain is not evaluated at this stage, but 
it is clearly directly related to the density of  the poly- 
mer, and ultimately must have an effect on the macro- 
scopic behaviour of  the polymer. 

It is assumed that during deformation the points of  
constriction are convected with the body of the poly- 
mer, and experience displacements identical to those 
of the whole volume of  the polymer. However, the 
displacements of the individual repeat units in the 
segments of the molecular chain within the tube and 
between the constricting points will, on average, be 
different. This can be understood as follows. In an 
amorphous polymer at the molecular level the 
material is inhomogeneous. The local configuration 
and symmetry (if any) of the potential energy phase 
space is different for each repeat unit ( C H  2 group). 
The freedom of  deformation of  each repeat unit is (i) 
severely restricted by the chain-like nature of the 
macromolecule, and (ii) is strongly affected by the 
local variations in packing density (free volume). 
Therefore, under uniform macroscopic deformation 
the displacements of individual repeat units must be 
different. 
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